Structure-Based 3D Pharmacophores: An Alternative to Docking?

Gerhard Wolber*,

Johannes Kirchmair and Thierry Langer

*wolber@inteligand.com

7th International Conference on Chemical Structures - G. Wolber

Abstract & Outline

• Pharmacophores & the Protein Data Bank

- o 3D pharmacophore methodology
- o Primary data source: The Protein Data Bank
- o Motivation: Structure-based pharmacophore creation tool

LigandScout

- o Ligand perception
- o 3D pharmacophore generation
- o Shared feature pharmacophores
- o Application example

• Docking Comparison

- o Compared active pose prediction
- o 58 relevant protein-ligand complexes

7th International Conference on Chemical Structures - G. Wolber

Structure-based pharmacophores

CDK2 Complexed With N-Methyl-{4- [2-(7-Oxo-6,7-Dihydro-8H-[1,3]Thiazolo[5,4-E]Indol-8-Ylidene)Hydrazino]Phenyl}Methanesulfonamide

7th International Conference on Chemical Structures - G. Wolber

Pharmacophore models

Pharmacophore = Ensemble of universal chemical features that represent a specific mode of action in 3D

Chemical Features: Hydrogen bonds, charge interactions, hydrophobic areas

7th International Conference on Chemical Structures – G. Wolber

Why use structure-based pharmacophores?

Universal

Pharmacophores represent chemical functions, valid not only for the currently bound, but also unknown molecules

Computationally efficient

Due to simplicity (Suitable for virtual screening)

Comprehensive & Editable

Selectivity-tuning by adding or omitting feature constraints

7th International Conference on Chemical Structures – G. Wolber

PDB age !

7th International Conference on Chemical Structures - G. Wolber

LigandScout: A structure-based pharmacophore creation tool

Structure-based pharmacophore creation from all PDB complexes:

- 1. Extract, identify and interpret ligands (hybridization states, bonds)
- 2. Create pharmacophores
- 3. Visualize, allow user interaction and export for virtual screening

Hybridization state determination

Quantitative Geometry Templates

for all geometry types:

- •sp³: tetrahedral
- •sp²: trigonal planar
- •sp: linear

Align along the first two points, numerically turn to match the third point

inte:ligand

7th International Conference on Chemical Structures - G. Wolber

Geometry templates: Better than bond angles?

7th International Conference on Chemical Structures – G. Wolber

Hybridization state: Error determination

$$d_{a} = \sum_{i=0}^{n} \sqrt{(I_{i} - O_{i})^{2}}$$
$$d_{r} = \frac{d_{a}}{n}$$

 d_a , d_r relative/absolute geometric deviation I_i ideal template positions O_i neighbor atom positionsnnumber of atoms

7th International Conference on Chemical Structures - G. Wolber

Hybridization state: Error determination

7th International Conference on Chemical Structures - G. Wolber

Ring geometry is different

Planar rings show different bond angles than non-ring sp² atoms: all planar ring atoms are to be sp² hybridized

7th International Conference on Chemical Structures – G. Wolber

Using PCA for planarity detection

Distance from PCA plane < 0.4 A

Double bond distribution among sp² atoms

- No exact solution in many cases (e.g. Keto-enol tautomere)
- Use of patterns explicitly covering all known cases from the view of a central atom
- Weighted distribution of the maximum number of double bonds for the rest of the cases (nonbipartite maximum matching)

Patterns by Roger Sayle: Bioinformatics Group, Metaphorics LLC, Santa Fe, see http://www.daylight.com/meetings/mug01/Sayle/m4xbondage.html

inte:ligand

7th International Conference on Chemical Structures - G. Wolber

Nonbipartite weighed matching

- Double Bond Distribution along adjacent sp² paths
 - Create bond classes: Identify longest and shortest bonds with non-linear geometry
 - Shortest bonds: high weights
 - Apply maximum number of double bonds using weighed nonbipartite complete matching

7th International Conference on Chemical Structures – G. Wolber

Pharmacophore creation

Chemical Features that are likely to occur in the complex:

- o Hydrogen Bond Donors
- o Hydrogen Bond Acceptors
- o Negative Ionizable Areas
- o Positive Ionizable Areas
- o Hydrophobic Interactions

Chemical features always refer to the ligand side.

Vectors: Direction and Distance constraint

Location Spheres: Distance constraint only

7th International Conference on Chemical Structures - G. Wolber

Chemical feature constraints

Distance Constraints

Relation between two points, one located on ligand side, one on macromolecular side.

Feature Type	Distance	
H-Bond	2.5-3.8 A	
Charge Transfer	1.5-5.6 A	
Hydrophobic	1.0-5.8 A	

Result: one tolerance sphere on ligand side

Direction Constraints

Relation between two atom groups, one located on ligand side, one on macromolecular side.

Groups form a rigid reference geometry, which are the basis for a directed vector.

inte:ligand

7th International Conference on Chemical Structures - G. Wolber

Chemical feature constraints: Rigid H-bonds

7th International Conference on Chemical Structures - G. Wolber

Chemical feature constraints: Flexible H-bonds

7th International Conference on Chemical Structures – G. Wolber

Chemical feature universality layers

Layer 4	Chemical Function	Without geometry constraint	Lipophilic area, positive ionizable area	
Layer 3		Including geometry constraint	Hydrogen bond Donor/Acceptor	Selectiv
Layer 2	Subgraph	Without geometry constraint	Hydroxylic group, Phenol Group	vity
Layer 1		Including geometry constraint	Phenol group facing a parallel benzene	

Universality

7th International Conference on Chemical Structures – G. Wolber

Application example: Gleevec

Gleevec in PDB complex 1IEP, 10PJ; variant 1FPU

7th International Conference on Chemical Structures – G. Wolber

Shared feature pharmacophore

Pharmacophore overlaying

Pharmacophore model derived from one single bound ligand may not be able to retrieve other related compounds ...

Starting set: Several ligandprotein complex pharmacophores Creation of compatibility graphs Maximum clique detection Feature alignment Calculation of combined features

... new shared feature pharmacophore

7th International Conference on Chemical Structures - G. Wolber

Shared feature pharmacophore

7th International Conference on Chemical Structures - G. Wolber

Shared feature pharmacophore

Exported to **Catalyst** using hypoedit tool:

- 4 lipophilic aromatic areas
- 2 hydrogen bonding interactions

7th International Conference on Chemical Structures - G. Wolber

Virtual screening setup

- Virtual screening using Catalyst
- 3 Databases:
 - o **PDB singleConf:** all PDB ligands with one single entry per conformation [67k]
 - o PDB multiConf: all PDB ligands with one single entry per unique molecule and 50 conformers each (multiConf; 50 FAST) [7k]

inte:ligand

o Maybridge 2003 (multiConf) [55k]

7th International Conference on Chemical Structures - G. Wolber

Virtual screening results

Gleevec shared feature pharmacophore

Database	Hits	Drug-like hits
PDB singleConf (~67k)	7	7
PDB multiConf (~7k)	2	2
Maybridge (~55k)	19	7

7th International Conference on Chemical Structures - G. Wolber

LigandScout summary

LigandScout

- Extracts and interprets ligands and their protein environment from PDB files
- Automatically creates and visualizes 3D pharmacophore models
- Creates overlaid "shared feature" pharmacophores to broaden the scope of a single model

inte:ligand

7th International Conference on Chemical Structures – G. Wolber

Docking comparison

Is it possible to predict the active pose of a ligand using a 3D pharmacophore?

Is fitting ligands to structure-based 3D pharmacophores as accurate as docking?

Method comparison: Discussion

Pharmacophores

- Pharmacophore biased to specific binding mode (multifeature binders less)
- Editable
- Fully automated
- Suitable for virtual screening (60,000 compounds in minutes)
- Conformer generation might become a limit

Docking

- Not biased to bound ligand
- Generic might detect different binding locations and modes
- Black Box
- Pre-processing necessary
- Suitability for VS questionable (30 sec to minutes per compound)

Docking and Pharmacophore Fitting

- Docked bio-active ligands into 58 pharmacologically relevant complexes [1] using FlexX and Gold
- 3. Generated unbiased conformers and fitted into LigandScout hypotheses using Catalyst (maxConfs=50, FAST) [2]
- 5. Compared best fitting conformation to best scored docking pose (CScore, GoldScore)
 - M. Kontoyianni, L.M. McClellan, G.S. Sokol. Evaluation of Docking Performance: Comparative Data on Docking Algorithms. J. Med. Chem.; 2004; 47(3); 558-565.
 - [2] J. Kirchmair, C. Laggner, G. Wolber, T. Langer. Comparative Analysis of Protein-Bound Ligand Conformations with Respect to Catalyst's Conformational Space Subsampling Algorithms. J. Chem. Inf. Model.; 2005; 45(2) pp 422 - 430;

7th International Conference on Chemical Structures – G. Wolber

Docking and fitting

7th International Conference on Chemical Structures – G. Wolber

7th International Conference on Chemical Structures – G. Wolber

7th International Conference on Chemical Structures – G. Wolber

1G49 RMS = 3.69

3.5 < RMS < 6: "inadequate fit"

7th International Conference on Chemical Structures – G. Wolber

inte:ligand

7th International Conference on Chemical Structures – G. Wolber

inte:ligand

7th International Conference on Chemical Structures – G. Wolber

Results

7th International Conference on Chemical Structures - G. Wolber

Cumulative percentage

7th International Conference on Chemical Structures – G. Wolber

Results summary

- More than 80% of the LigandScout complex fits are below an RMS of 3.5!
- "Binding site bias" can be seen as an advantage
- Better conformer generation might further improve results

inte:ligand

7th International Conference on Chemical Structures - G. Wolber

Conclusions

- 3D pharmacophores perform considerably well in predicting poses
- Accuracy is comparable to docking (with fewer complete failures)
- Virtual screening using 3D pharmacophores is much faster (pre-sampled multi-conformer databases)

>> Structure-based 3D pharmacophores are a viable alternative to docking!

7th International Conference on Chemical Structures – G. Wolber

Literature

- G. Wolber and T. Langer. LigandScout: 3-D Pharmacophores Derived from Protein-Bound Ligands and Their Use as Virtual Screening Filters J. Chem. Inf. Model.; 2005; 45; 160-169
- T. Steindl and T. Langer. Docking Versus Pharmacophore Model Generation: A Comparison of High-Throughput Virtual Screening Strategies for the Search of Human Rhinovirus Coat Protein Inhibitors. QSAR and Combinatorial Science; 2005; in press

7th International Conference on Chemical Structures – G. Wolber

Acknowledgements

inte:ligand

- Alois Dornhofer
- Robert Kosara
- Martin Biely
- Fabian Bendix
- Eva Maria Krovat
- Theodora Steindl

- Thierry Langer
- Johannes Kirchmair
- Christian Laggner
- Daniela Schuster
- Oliver Funk

7th International Conference on Chemical Structures – G. Wolber