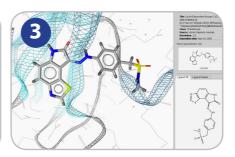
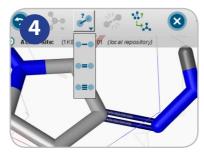


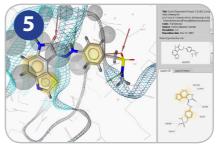
Creating a pharmacophore from a single protein-ligand complex

Experience level: basic Time needed: 5 minutes

Views	Sequence	User Controls	Advanced controls (opt.)
Macromolecule viewActive site view	 Download PDB file using 4-letter code Discover the correct ligand Focus on active site and switch to active site view Check and eventually correct ligand chemistry Create a structure-based pharmacophore 	 Ligand box Create pharmacophore (button or menu) OR: Create pharmacophore for Catalyst/MOE/Phase 	 Change bond type Change atom type Create new bond Move to core Move to environment Compound switching


Description:


Type '1ke6' in the upper right area of the screen and press the button 'Download 1ke6' [1]. The protein will be downloaded and displayed (this is the 'macromolecule view') [2]. Click on the yellow box within the protein representing the ligand - an animated zoom begins ending in [3]. Since ligand structures in the PDB only contain incomplete information, you should always check whether all bonds are typed correctly. Bond types can be changed by selecting a bond (by clicking on it either in the 2D or 3D view) and by using the retype bond button [5] or the keys 1, 2, or 3. Once the ligand is chemically correct, create a pharmacophore by pressing Ctrl-F9 (Cmd-F9 on OS X) [4].


- o Pharmacophore modeling: Creating shared and merged feature pharmacophores
- o Customizing pharmacophore creation preferences
- o Virtual screening

Pharmacophore modeling: Create shared & merged feature pharmacophores using chemical features from three PDB structures

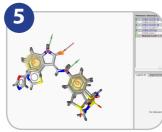
Experience level: medium Time needed: 15 minutes

Views	Sequence	User Controls	Advanced controls (opt.)
 Macromolecule view Active site view Alignment view 	 Download PDB File '1ke6' Check & correct ligand Create pharmacophore Add ligand and pharmacophore to alignment view Repeat the last 4 steps for '1ke7' and '1ke8' Create a 'shared feature pharmacophore' from the 3 pharmacophores Align the three ligands to the new pharmacophore 	 Ligand box Create pharmacophore (button or menu) Add molecule to alignment Add pharmacophore to alignment Generate shared feature pharmacophore (by features) Generate merged feature pharmacophore 	 Set reference element Center all structures Alignment context menu

Description:

Type '1ke6' in the upper right area of the screen and press the button 'Download '1ke6'. The protein will be downloaded and displayed in macromolecule view. Click on the yellow box to focus on ligand 'LS2201'. Check the ligand for its correctness. Press ctrl-f9 to create a pharmacophore (cmd-f9 on OS X). Use the data exchange widget and select 'add molecule to alignment view' [1a] and the molecule will be added to the alignment view, increasing a counter in the corresponding tab. Use the data exchange widget and select 'add pharmacophore to alignment view' [1b] to do the same with the pharmacophore. Repeat these steps with '1ke7', and '1ke8'. Finally, you should have six elements in the alignment view. Click on the 'Alignment' tab to work with them.

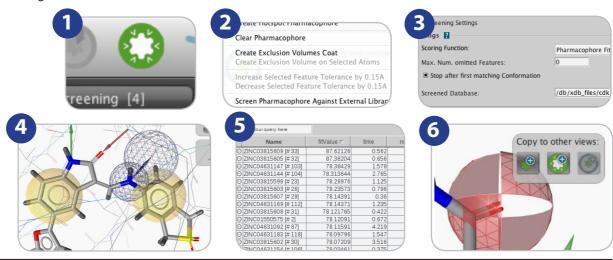
Select the three pharmacophores in the alignment list using Ctrl-click or multiple selection [2], and press the 'Generate shared feature pharmacophore (by features)' button [3]. A new pharmacophore called 'Shared [LS2201-1, LS3201-1, LS42-1]' is appended to the list. Mark this element and make it the reference element using the 'Set reference' button, which will change the display style of this element to red and bold. Now use the ctrl key (cmd on OS X) to additionally select the molecules identified by the blue icons [4]. Additionally, hide the three pharmacophores derived from 1ke6, 1ke7, and 1ke8 by clicking on the eye symbols on the right next to these alignment entries [4]. Now press the 'align' button. You will see the three ligands aligned to the shared feature pharmacophore derived from the three PDB complexes [5].


- o Customizing pharmacophore creation preferences
- o Virtual screening in LigandScout

Virtual screening and comparing active/inactive hit retrieval rates

Experience level: advanced Time needed: 15 minutes

Views	Sequence	User Controls	Advanced controls (opt.)
Macromolecule viewActive site view	 Create pharmacophore for virtual screening Initiate virtual screening Refine pharmacophore model Repeat virtual screening 	 Ligand box Create pharmacophore (button or menu) Initiate virtual screening 	 Virtual screening with omitted features


Description:

Virtual screening aims at the maximum enrichment of active compounds in a hit list. Therefore, such methods are usually validated by assessing the accuracy of discrimination between actives and decoys. A good pharmacophore model will be able to identify a significant portion of known active compounds and as few decoys as possible. In this tutorial, two different types of precalculated multiconformational databases are available: A library containing a selection of known active compounds and a library of decoys.

Type '1ke7' in the upper right area of the screen, press the button 'Download 1ke7'. Create a pharmacophore of the protein-ligand complex as described in the LigandScout tutorial sheet 1 'Creating a pharmacophore from a single protein-ligand complex' [1]. Perform virtual screening using a multi-conformational database with known active compounds (filename 'cdk2-ligands.ldb') for screening using the 'Screen pharmacophore against external library' item located in the 'Pharmacophore' menu [2]. Virtual screening will be initiated after selecting the library file (press the butten with the three dots to open a file dialog) and the number of omittable features [3].

Since the initial pharmacophore was derived from all the interactions of only one single ligand, it is rather restrictive and retrieves only few hits. Downsize the number of features by deleting less important features [4] or increase the tolerances of the features by selecting a feature and then choosing 'Pharmacophore'->'Increase Selected Feature Tolerance' from the menu. Compare the ratio of active compounds and decoys (library filename 'cdk2-decoys.ldb') retrieved by your pharmacophore in order to estimate its predictive power [5]. Further adapt the pharmacophore in order to improve the ratio of actives and decoys obtained by virtual screening: Remove non-essential chemical features and exclusion volume spheres in order to increase sensitivity; adapt the size of the feature spheres by pressing 'ctrl-shift-plus' or the corresponding menu entry ('Pharmacophore - Decrease Selected Feature Tolerance') or use the pharmacophore from tutorial card 2 using the data exchange widgets [6].

- o Pharmacophore modeling: Creating shared and merged feature pharmacophores
- o Customizing pharmacophore creation preferences
- Analyzing screening results

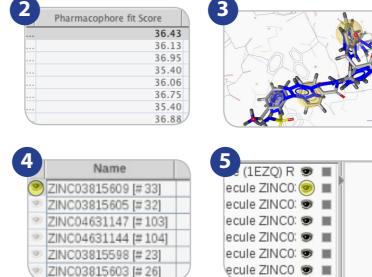
Analyze LigandScout pharmacophore screening results

Experience level: medium Time needed: 10 minutes

Prerequisites: Virtual screening hit list

Views	Sequence	User Controls	Advanced controls (opt.)
Library view (spread-	 Create or import screening results Sort virtual screening hit list Inspect and compare hits Discover controls of the library view 	Library view (Spread-	 Calculation of Gaussion
sheet) Hierarchy view		sheet) Viewer controls	Shape Similarity Score

Description:


Perform virtual screening to obtain a hit list as described on tutorial card 4'Virtual screening and comparing active/inactive hit retrieval rates' or insert external screening results from a library file via the 'File - Insert' menu entry. Results of virtual screening are depicted in the library view [1]. Sort the hit list by a single click on the 'Pharm. Fit Score' table header [2]. You may invert the sorting order by an additional click. Select a compound of interest by single click on the corresponding table row to be depicted in the active site view together with the original ligand [3]. Multiple compounds are selected when holding shift or ctrl (cmd on MAC OS X) while clicking. Keep compounds visible independent from the current selection state by clicking the eye symbol in the table left to the molecule name in the library view spreadsheet [4].

The visibility of the core molecule (i.e., the original ligand) and other items in the active site view is toggled with the eye symbol located in the hierarchy view on the right side next to the molecule name [5]. Select a custom color for the core molecule using the square icon next to the eye icon in the hierarchy view.

Calculation of the Gaussian Shape Similarity Score offers further functionality for scoring. Use the 'Calculate Gaussian Shape Similarity Score' function located in the 'Library' menu for calculation. A new property 'Shape Tanimoto Score' will be added in the library view and you can use the spreadsheet functionality for sorting and ranking as described above.

- Pharmacophore modeling: Creating shared and merged feature pharmacophores
- o Customizing pharmacophore creation preferences

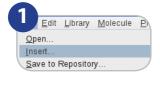
Name	fitValue ▽	time	numConfs
3815609 [#33]	87.62126	0.562	400
03815605 [#32]	87.38204	0.656	400
04631147 [# 103]	78.38429	1.578	400
04631144 [# 104]	78.313644	2.765	400
03815598 [# 23]	78.28976	1.125	400
03815603 [# 26]	78.23573	0.796	196
03815607 [# 29]	78.14391	0.36	174
04631169 [# 112]	78.14371	1.235	219
03815608 [#31]	78.121765	0.422	361
01550575 [# 2]	78.12091	0.672	400
04631092 [# 87]	78.11591	4.219	400
04631183 [# 118]	78.09796	1.547	400
03815602 [#30]	78.07209	3.516	400
04631154 [# 106]	78.03461	0.375	400
04631177 [# 115]	78.02224	2.297	400
02047781 [# 9]	78.00544	0.735	400
03941407 [# 43]	78.00391	0.344	400
2007314 [# 7]	77.95323	3.954	400

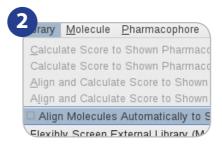
View and rescore docking poses with pharmacophores

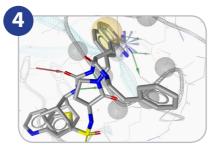
Experience level: medium Time needed: 10 minutes

Prerequisites: docking poses from external sources

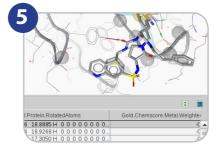
Views	Sequence	User Controls	Advanced controls (opt.)
Library view (spread- sheet)Hierarchy view	 Download PDB File Switch to active site view Import docking poses Analyze docking poses Rescore docking poses Align docking poses to pharmacophore Discover the viewer controls of the library view 	Library view (Spread- sheet)Viewer controls	


Description:


Download '1ke7' and create the pharmacophore of the protein-ligand complex. Import the corresponding docking poses stored in MDL SDF file format (tutorial filename '1ke7-docking.sdf') via the 'File' - 'Insert' menu entry [1]. Make sure that the 'Align Molecules Automatically to Shown Pharmacophore' option located in the 'Library' menu is deactivated [2], which ensures that the coordinates of the docking poses relative to the protein are preserved. The compounds are imported to Ligand-Scout including all properties given in the SD file, such as the docking score. Sort the list of docking poses by a single click on the table header corresponding to the docking score [3]. Invert the sorting order by an additional click if necessary.

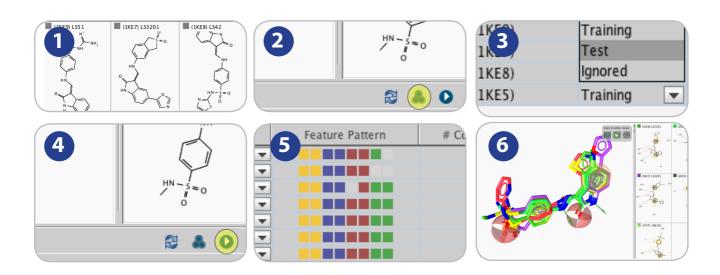

LigandScout offers four different options for rescoring docking poses based on the 3D pharmacophore that is currently visible in LigandScout: The calculation of the pharmacophore fit of imported docking poses considering or ignoring excluded volume spheres, and the calculation of the pharmacophore fit of the docking poses after alignment to the pharmacophore considering or ignoring excluded volume spheres. Alignment to the pharmacophore before scoring may be useful to optimize docking poses [4]. All four modes are accessed via the 'Library' menu. You can modify the pharmacophore by deleting features, adding excluded volumes, etc. to reflect the important features of the binding site that should be fulfilled by the highest ranked hits. Alignment of imported docking poses to the shown pharmacophore is performed automatically upon selection of a spreadsheet line (i.e. a single docking pose) if the 'Align Molecules Automatically to Shown Pharmacophore' option located in the 'Library' menu is activated. Poses may also be aligned to the pharmacophore using LigandScout's alignment algorithm using the 'Align' button located in the upper right corner of the library view [5].

Where to go from here:


o Customizing pharmacophore creation preferences

3		
	Gold.Chemscore.Fitness ▽	
3.omega sdf 16 dock2	38.1147	7.9661
s.omega sdf 136 dock	37.1573	8.3734
. dock2 [# 1]	35.5703	7.6742
s.omega sdf 97 dock3	34.9029	8.1409
. dock1 [# 2]	34.7940	8.1723
s.omega sdf 44 dock2	34.7397	7.9139
s.omega sdf 10 dock3	34.7303	8.5255
s.omega sdf 33 dock1	33.9775	8.4383
[dock7 [#3]	33.9036	8.0303
s.omega sdf 61 dock2	33.7200	7.5005
omega sdf 12 dock2	33.5666	8.263)
magaledfl126ldack	22 2215	0 20

Espresso: Create ligand-based 3D pharmacophores


Experience level: intermediate Time needed: 15 minutes

Views	Sequence	User Controls	Advanced controls (opt.)
o Ligand-based Modeling	 Import ligands Cluster ligand-set in 3D Generate ligand-based pharmacophore model 	 3D Clustering Generate ligand-based pharmacophore model (button or menu) 	 Use different settings for conformational model generation Use different settings for clustering Use different settings for ligand-based pharmacophore model generation

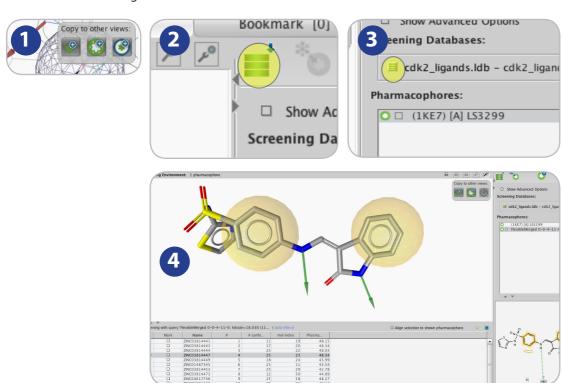
Description:

Open the smiles file containing your ligands ('cdk2.smi') by choosing the 'File-Open' menu. The ligands are imported and shown in 2D on the right side of the screen [1]. Set all candidates for the model to 'training set' by choosing 'Ligand-Set -> Flag Selected Molecules as Training Set'. Cluster the ligand set according to their 3D pharmacophore characteristics using the 'cluster' button on the bottom of the 3D view [2]. Keep the default setting in the following dialog and start the clustering process by pressing the 'OK' button. Espresso will create a new column in the ligand table called 'Cluster ID'. Sort the table using this column by clicking on the column header 'Cluster ID'. Set all molecules with cluster ID '1' to test set by using the table controls [3]. Now click on the button 'Create ligand-based pharmacophore'"[4] using the default values to start pharmacophore generation. A ligand-based model will be created and displayed in the 3D view. Feature patterns [5] in the table indicate, which features are met by which ligand. A click on a colored square indicates, which feature is linked to the corresponding square. The list on the right lower corner of the screen shows several pharmacophore solutions: by selecting a different solution, it is shown in the 3D view with the ligands aligned accordingly [6]. You can use the data exchange controls on the upper right corner of the 3D view to move the currently shown pharmacophore to other views (e.g. screening) or save it using the 'File -> Save' menu and selecting a file type that represents pharmacophores.

- o Align structure-based pharmacophore models with ligand-based ones
- o Virtual screening in LigandScout

Screen several databases using the "Screening Perspective"

Experience level: intermediate Time needed: 5 minutes


Views	Sequence	User Controls	Advanced controls (opt.)
o Screening view	 Add pharmacophore model to screening view Load virtual database Perform virtual screening 	 Load Screening Database (Button) Perform Screening (Button) 	o none

Description:

In contrast to the virtual screening procedure in the 'Structure-based Modeling' perspective which is designed for pharma-cophore model refinement with respect to ligand-binding pocket properties, the 'Screening' perspective provides a fast and convenient way of performing multiple virtual screens with different screening databases against your final pharmacophore model, which can be useful for validation.

Import your favorite pharmacophore model (e.g. the one created from tutorial card 1 or 6) into the 'Screening' perspective either by using the 'Exchange Data Widget' [1] or the 'Open' entry in the 'File' menu. Click on the 'Load Screening Database' button [2] to load the screening database 'cdk2-ligands.ldb'. Enable the loaded screening database for screening by clicking on the grey button left to the screening database entry [3]. Now, select the pharmacophore model from the 'Pharmacophores' list to make sure it is shown in the 3D view. Next to the 'Load Screening Database' button, the 'Perform Screening' and 'Delete Pharmacophore' button will be enabled. Click on the 'Perform Screening' button to initiate the virtual screening. View the results in the table at the bottom of the screen [4]. You can add more databases and pharmacophores for further virtual screening experiments. Please make sure that only one pharmacophore is visible before you start screening.

- Analyze screening results
- Advanced screening: ROC curves and model combination

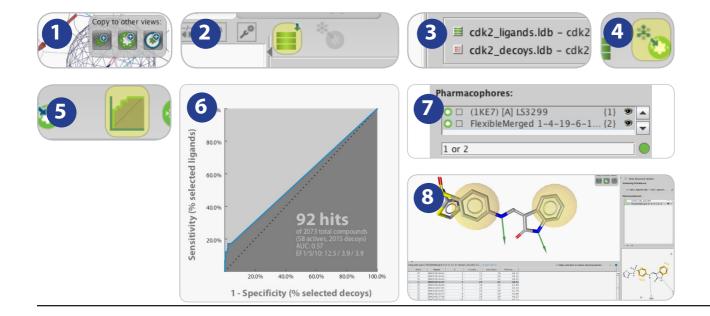
Advanced screening: ROC curves and model combination

Experience level: advanced Time needed: 15 minutes

Views	Sequence	User Controls	Advanced controls (opt.)
o Screening view	 Add pharmacophore models to screening view Load virtual database Perform virtual screening Plot ROC curve Combine models by 'OR' 	 Load Screening Database (Button) Perform Screening (Button) Plot ROC Curve (Button) 	 Boolean Expression (Field)

Description:

In contrast to the virtual screening procedure in the 'Structure-based Modeling' perspective which is designed for pharma-cophore model refinement with respect to ligand-binding pocket properties, the 'Screening' perspective provides means for statistical evaluation of screening performance.


Import the structure-based pharmacophore models from PDB entry 1ke7 (tutorial card 1) and the ligand-based CDK2 pharmacophore (tutorial card 2) into the 'Screening' perspective either by using the 'Exchange Data Widget' [1] or, alternatively, load a saved version using the 'Open' entry in the 'File' menu. Click on the 'Load Screening Database' button [2] to load the screening database 'cdk2-ligands.ldb', and click the same button again and load the database 'cdk2-decoys.ldb'. Click once on the tri-state selector left to the database names to mark 'cdk2-ligands.ldb' as a database containing actives (green database symbol), and twice on the tri-state slector left of 'cdk2-decoys.ldb' to mark this database as decoys (red database symbol) [3]. Now, select the pharmacophore model '1ke7' from the 'Pharmacophores' list to make sure it is shown in the 3D view. Click on the 'Perform Screening' button to initiate the virtual screening [4]. After screening has finished, press the 'Plot ROC Curve' button [5] to plot a ROC curve [6].

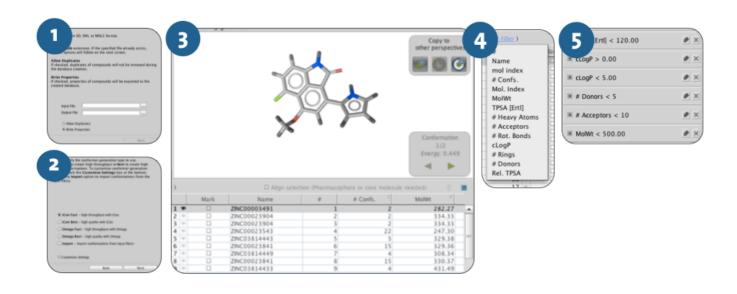
Now select both pharmacophores in the 'Pharmacophores' table. Numbers in curly brackets ("{1} and {2}") indicate the number of the pharmacophore. Enter "1 or 2" into the boolean expression field [7] indicating that a virtual hit in this screening run should either fit into the first (1) or to the second (2) pharmacophore. Press the screening button [4] again to re-screen, and the ROC curve button [5] again to compare the virtual screening statistics.

View the virtual hits in the table at the bottom of the screen [8]. You can add more databases and pharmacophores for further virtual screening experiments.

Where to go from here:

Analyze screening results

LigandScout Molecule Tables: Filtering & Export


Experience level: intermediate Time needed: 15 minutes

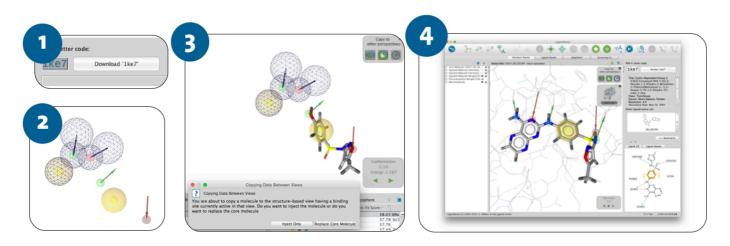
Views	Sequence	User Controls	Advanced controls (opt.)
o IDBGEN Database generator	o Create a multiconforma-	○ IDBGEN GUI	○ Export 2D structure files
o Structure-based view	tional database from a	○ Load LDB file	○ Export to Microsoft Excel
o Table view	smiles file	○ Calculate standard	
	o Examine the compounds	properties	
	 Calculate physicochemical properties 	○ Apply filter rules	
	o Filter and export molecular		
	structures		

Description:

Start the IDBGEN GUI molecular database generator [1]. Chose a smiles file of molecules as input file and specify the output file. Set the iCon FAST option for conformation generation [2]. After completion, load the resulting ldb file into the structure-based perspective and focus on the table view [3]. Calculate some physicochemical parameters and molecular descriptors using *Library -> Calculate Standard Properties*. Apply filters [4, 5] and view the dynamically generated results.

- o Export the molecular structures together with the calculated standard properties to a 2D SDF file
- o Export the filtered compound list to a Microsoft Excel file

In Silico Fragment Screening with LigandScout


Experience level: advanced Time needed: 15 minutes

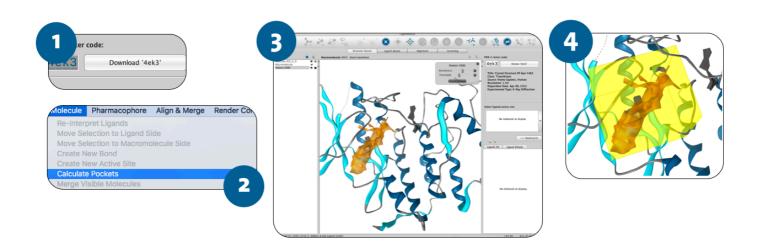
Views	Sequence	User Controls	Advanced controls (opt.)
Macromolecular view	o Create structure based	o Ligand box	○ Re-dock resulting molecules
○ Screening view	pharmacophore model	o Create pharmacophore	and minimize
○ Active site view	o Switch to screening view	o Set features optional	o Re-score the molecules by
	o Perform fragment screening	o Initiate virtual screening	estimating the free energy
	⊙ Inject hits back into protein	o Library view	of binding
	binding site	o Inject hits into protein	○ Export results
	o Join fragments to create	binding site	
	new molecules	o Minimize hits	
		Merge molecules	

Description:

Type "1ke7" in the upper right area of the screen, press the button "Download 1ke7" [1], click on the yellow box, and generate a pharmacophore model. Move the model to the Screening view. Load the tutorial fragment library (fragments4tutorial.ldb). Set the left three features as optional by selecting them (press Shift+left mouse button and draw a rectangle around them) and use the *Pharmacophore -> Mark Features as Optional* command [2]. Perform screening, examine the resulting hits, and inject the most suitable ones back into the protein binding site [3]. Reset the three left features as mandatory using the *Pharmacophore -> Unmark Features as Optional* command, set the right two features as optional and repeat the screening. Examine the resulting hits, and inject the most suitable ones back into the protein binding site. In the Structure-based perspective, minimize each fragment and observe their behavior. Using the viewer option in the hierarchical view, make two fragments visible that overlap with one atom. Delete one of the overlapping atoms and merge the molecules using the *Molecule -> Merge Visible Molecules* command. Create a bond between both fragments. Minimize the resulting new molecule and create a pharmacophore model. Analyze the interactions and compare them to the model generated from the initial ligand. Repeat this procedure for other fragment combinations [4].

- o Re-dock, minimize, and re-score newly created molecules in order to identify the most interesting candidates
- o Export the most favorable designs as an Excel spreadsheet, or as 3D or 2D sdf files

Finding druggable pockets in proteins with LigandScout


Experience level: advanced Time needed: 10 minutes

Views	Sequence	User Controls	Advanced controls (opt.)
Macromolecular view Active site view	 Download PDB file using 4-letter code Perform pocket analysis Select and create a new binding pocket 	Pocket finder widgetLigand box	 Adjust parameters for buriedness and threshold Create multiple binding pockets Perform docking Perform apo-site pharmacophore model generation

Description:

Type "4eq3" in the upper right area of the screen and press the button "Download"[1]. From the dropdown menu, select *Molecule -> Calculate Pockets* [2]. A grid is calculated over the entire protein structure and grid points are evaluated according to their buriedness and their number of neighboring grid points. Isocontour surfaces are generated [3]: Orange colored isosurfaces are considered to highlight druggable pockets, where dark grey colored ones are considered too small to accommodate a drug-like ligand. Values for buriedness and threshold can be modified by moving the sliders on the Pocket-GRID widget [3], while clicking on the *Create pockets* button will define a new binding site highlighted by the yellow box [4]. Clicking on the yellow box will zoom into the Active site view and from here, docking or apo-site pharmacophore creation can be performed.

- o Dock ligands into the newly defined binding site
- o Create apo-site pharmacophore models

Creating pharmacophore models in empty binding sites

Experience level: advanced Time needed: 25 minutes

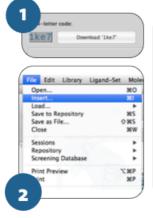
Sequence	User Controls	Advanced controls (opt.)
⊙ Open PDB file	o Pocket finder widget	o Perform virtual screening
○ Find potential binding	○ Ligand box	o Refine pharmacophore
pocket	o Ligand accessible surface	models from retrieved hit
 Switch to active site view 	property display	molecules
o Create apo site grids	o Define apo site	 Move pharmacophore
o Create apo site pharmaco- phore model	pharmacophore settings	features in 3D space
	 Open PDB file Find potential binding pocket Switch to active site view Create apo site grids Create apo site pharmaco- 	 Open PDB file Find potential binding Digand box Ligand accessible surface Switch to active site view Create apo site grids Create apo site pharmaco-

Description:

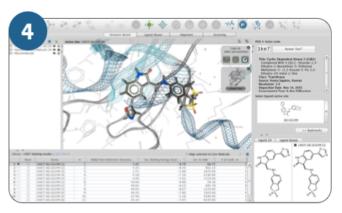
Type "4ek3" in the upper right area of the screen, and press the button "Download 4ek3" [1]. The protein will be downloaded and displayed in the macromolecule view. Search for the druggable pocket using the LigandScout Pocket Finder (see tutorial card 11) and define the binding site. Zoom into it by clicking on the yellow box. Calculate the entire possible pharmacophore interactions by selecting *Pharmacophore -> Create Apo Site* Grids [2]. Modify the apo site pharmacophore feature probabilities by moving the sliders in the Apo-Site Pharmacophore widget [4]: Moving sliders to the right will make features less probable, moving them to the left will make features more probable. Restore default settings by clicking the *return back* symbol located at the right of the slider. By clicking the *Create* button, the *Apo-Pharmacophore Settings* dialogue will appear [5]. Create a model by selecting the nature and number of features that you want to be considered in the automated generation process. Start with HBA, HBD, and hydrophobic features. Repeat the procedure for positive and negative ionizable features. Refine the model by modifying the final number of features, merging some of them, or moving them to new positions. Select grid points and add features if necessary. Add or remove exclusion volume spheres. Use the model for virtual screening or for re-scoring docked poses.

- o Insert hits obtained from VS into the binding site
- o Create new pharmacophore models from minimized hit structures obtained
- Re-score poses obtained from molecular docking

Docking a molecule into a binding site using the built-in AutoDock program


Experience level: intermediate Time needed: 25 minutes

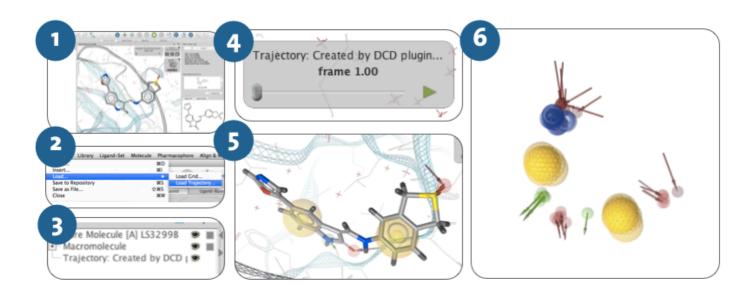
Views	Sequence	User Controls	Advanced controls (opt.)
Macromolecule view	o Download PDB file using 4-	○ Ligand box	○ Filter poses based on
○ Active site view	letter code	o Insert smiles string	pharmacophore features
o Table view	○ Switch to active site view	o Dock molecule	o Minimize poses
	 Insert molecule into the binding site Perform the docking experiment 	○ Analyze docking poses	 Re-score poses by estimating the free energy of binding Create new binding site Dock molecules into new binding site


Description:

Type "1ke7" in the upper right area of the screen, and press the button "Download 1ke7" [1]. The protein will be downloaded and displayed in the macromolecule view. Click on the yellow box within the protein representing the ligand in order to zoom into the binding site. Insert the molecules as sdf that you want to dock into the binding site, using File -> Insert [2] or by pasting a smiles file (Cntrl-V). Select the molecules that you want to dock from the table below the 3D window. Proceed with the docking experiment by using Molecule -> Dock Ligands -> AutoDock 4.2 or AutoDock Vina 1.1 [3]. After the experiment is finished, the results will be displayed in the table view [4], each compound ranked according to the most favorable interaction energy. Analyze the docked poses by creating pharmacophore models for viewing the interactions with the protein. Filter the poses based on the interactions common to those of the original ligand.

- Minimize the docked poses
- o Calculate the free energy of binding and determine the MMFF94 estimated binding enthalpies
- o Calculate the pharmacophore fit score based on the model generated from the original ligand structure
- Create a new binding site by selecting amino acids with the mouse (hold left button while pressing the "Shift" key, move over the region you want to investigate and create a binding site from the menu Molecule -> Create New Binding Site), or use the pocket finder (see tutorial card 11) for finding a new druggable pocket and repeat the docking experiment.

Analyzing Molecular Dynamics Trajectories with LigandScout


Experience level: advanced Time needed: 15 minutes

Views	Sequence	User Controls	Advanced controls (opt.)
o Macromolecule view	o Open PDB file	○ Ligand box	o Create shared feature
o Active site view	o Switch to active site view	o Molecular dynamics	models
	o Load molecular dynamics	trajectory Widget	o Perform virtual screening
	trajectory file	○ Playback trajectory	with MD derived
	 Analyze the trajectory 	o Create pharmacophore	pharmacophore models
	 Create pharmacophore 	models	
	models	o Align pharmacophore	
		models	

Description:

Load the PDB file containing the initial frame of your molecular dynamics simulation (1ke7_start.pdb) [1]. Click on the yellow box within the protein representing the ligand in order to zoom into the binding site. Load the DCD file of the molecular dynamics trajectory (1ke7_trajectories.dcd) [2] and select the trajectory in the hierarchical view [3]. Press the play button in the MD trajectory widget [4] for viewing the results of the dynamics simulations [5]. Pause at any time and generate a pharmacophore model. Move the pharmacophore model into the alignment perspective. Repeat this several times. In the alignment perspective, analyze the features that are common in all models [6].

- o Align pharmacophore models generated from MD trajectory
- o Create shared feature and merged feature models from the different pharmacophore families
- o Perform virtual screening with the different models

